Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75.073
Filtrar
1.
Physiol Plant ; 176(2): e14266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558467

RESUMO

Plant growth is restricted by salt stress, which is a significant abiotic factor, particularly during the seedling stage. The aim of this study was to investigate the mechanisms underlying peanut adaptation to salt stress by transcriptomic and metabolomic analysis during the seedling stage. In this study, phenotypic variations of FH23 and NH5, two peanut varieties with contrasting tolerance to salt, changed obviously, with the strongest differences observed at 24 h. FH23 leaves wilted and the membrane system was seriously damaged. A total of 1470 metabolites were identified, with flavonoids being the most common (21.22%). Multi-omics analyses demonstrated that flavonoid biosynthesis (ko00941), isoflavones biosynthesis (ko00943), and plant hormone signal transduction (ko04075) were key metabolic pathways. The comparison of metabolites in isoflavone biosynthesis pathways of peanut varieties with different salt tolerant levels demonstrated that the accumulation of naringenin and formononetin may be the key metabolite leading to their different tolerance. Using our transcriptomic data, we identified three possible reasons for the difference in salt tolerance between the two varieties: (1) differential expression of LOC112715558 (HIDH) and LOC112709716 (HCT), (2) differential expression of LOC112719763 (PYR/PYL) and LOC112764051 (ABF) in the abscisic acid (ABA) signal transduction pathway, then (3) differential expression of genes encoding JAZ proteins (LOC112696383 and LOC112790545). Key metabolites and candidate genes related to improving the salt tolerance in peanuts were screened to promote the study of the responses of peanuts to NaCl stress and guide their genetic improvement.


Assuntos
Arachis , Plântula , Arachis/genética , Plântula/genética , Cloreto de Sódio , Multiômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
2.
PeerJ ; 12: e17115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560454

RESUMO

Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.


Assuntos
Proteínas Argonautas , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas Argonautas/genética , Regulação da Expressão Gênica de Plantas , Complexo de Inativação Induzido por RNA/genética , Produtos Agrícolas/genética
3.
Physiol Plant ; 176(2): e14240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561015

RESUMO

Under stress conditions, plants modulate their internal states and initiate various defence mechanisms to survive. The ubiquitin-proteasome system is one of the critical modules in these mechanisms, and Plant U-Box proteins play an important role in this process as E3 ubiquitin ligases. Here, we isolated the Plant U-box 24 gene CaPUB24 (Capsicum annuum Plant U-Box 24) from pepper and characterized its functions in response to drought stress. We found that, compared to the other CaPUBs in the same group, the expression of CaPUB24 was significantly induced by drought stress. We also found that CaPUB24 was localized to the nucleus and cytoplasm and had E3 ubiquitin ligase activity. To investigate the biological role of CaPUB24 in response to drought stress further, we generated CaPUB24-silenced pepper plants and CaPUB24-overexpressing Arabidopsis transgenic plants. CaPUB24-silenced pepper plants exhibited enhanced drought tolerance compared to the control plants due to reduced transpirational water loss and increased abscisic acid (ABA) sensitivity. In contrast, CaPUB24-overexpressing Arabidopsis transgenic plants exhibited reduced drought tolerance and ABA-insensitive phenotypes. Our findings suggest that CaPUB24 negatively modulates drought stress response in an ABA-dependent manner.


Assuntos
Arabidopsis , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Secas , Arabidopsis/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
4.
GM Crops Food ; 15(1): 118-129, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564429

RESUMO

Soybean is one of the important oil crops and a major source of protein and lipids. Drought can cause severe soybean yields. Dehydrin protein (DHN) is a subfamily of LEA proteins that play an important role in plant responses to abiotic stresses. In this study, the soybean GmDHN9 gene was cloned and induced under a variety of abiotic stresses. Results showed that the GmDHN9 gene response was more pronounced under drought induction. Subcellular localization results indicated that the protein was localized in the cytoplasm. The role of transgenic Arabidopsis plants in drought stress response was further studied. Under drought stress, the germination rate, root length, chlorophyll, proline, relative water content, and antioxidant enzyme content of transgenic Arabidopsis thaliana transgenic genes were higher than those of wild-type plants, and transgenic plants contained less O2-, H2O2 and MDA contents. In short, the GmDHN9 gene can regulate the homeostasis of ROS and enhance the drought resistance of plants.


Assuntos
Arabidopsis , Arabidopsis/genética , Resistência à Seca , Soja/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Secas , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Genome Biol ; 25(1): 84, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566207

RESUMO

BACKGROUND: Epigenetic marks are reprogrammed during sexual reproduction. In flowering plants, DNA methylation is only partially remodeled in the gametes and the zygote. However, the timing and functional significance of the remodeling during plant gametogenesis remain obscure. RESULTS: Here we show that DNA methylation remodeling starts after male meiosis in rice, with non-CG methylation, particularly at CHG sites, being first enhanced in the microspore and subsequently decreased in sperm. Functional analysis of rice CHG methyltransferase genes CMT3a and CMT3b indicates that CMT3a functions as the major CHG methyltransferase in rice meiocyte, while CMT3b is responsible for the increase of CHG methylation in microspore. The function of the two histone demethylases JMJ706 and JMJ707 that remove H3K9me2 may contribute to the decreased CHG methylation in sperm. During male gametogenesis CMT3a mainly silences TE and TE-related genes while CMT3b is required for repression of genes encoding factors involved in transcriptional and translational activities. In addition, CMT3b functions to repress zygotic gene expression in egg and participates in establishing the zygotic epigenome upon fertilization. CONCLUSION: Collectively, the results indicate that DNA methylation is dynamically remodeled during male gametogenesis, distinguish the function of CMT3a and CMT3b in sex cells, and underpin the functional significance of DNA methylation remodeling during rice reproduction.


Assuntos
Metilação de DNA , Oryza , Oryza/genética , Oryza/metabolismo , Sementes/metabolismo , Metiltransferases/metabolismo , Gametogênese , Regulação da Expressão Gênica de Plantas
6.
Int J Dev Biol ; 68(1): 9-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591693

RESUMO

The megasporangium serves as a model system for understanding the concept of individual cell identity, and cell-to-cell communication in angiosperms. As development of the ovule progresses, three distinct layers, the epidermal (L1), the subepidermal or the hypodermal (L2) and the innermost layers (L3) are formed along the MMC (megaspore mother cell). The MMC, which is the primary female germline cell, is initiated as a single subepidermal cell amongst several somatic cells. MMC development is governed by various regulatory pathways involving intercellular signaling, small RNAs and DNA methylation. The programming and reprograming of a single nucellar cell to enter meiosis is governed by 'permissive' interacting processes and factors. Concomitantly, several nucellar sister cells are prevented from germline fate also by a set of 'repressive' factors. However, in certain angiosperms, anomalies in development of the female gametophyte have been observed. The sporophytic tissue surrounding the female gametophyte affects the gametophyte in multiple ways. The role of genes and transcription factors in the development of the MMC and in the regulation of various processes studied in selected model plants such as Arabidopsis is explained in detail in this paper. However, as angiosperms display enormous diversity, it is important to investigate early stages of megasporogenesis in other plant systems as well. Such studies provide valuable insights in understanding the regulation of megasporogenesis and the evolution of the female gametophyte from gymnosperms to flowering plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Gametogênese Vegetal/genética , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Células Germinativas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Sci Rep ; 14(1): 8015, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580719

RESUMO

Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
8.
Nat Commun ; 15(1): 2988, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582884

RESUMO

Class I KNOTTED-like homeobox (KNOXI) genes are parts of the regulatory network that control the evolutionary diversification of leaf morphology. Their specific spatiotemporal expression patterns in developing leaves correlate with the degrees of leaf complexity between simple-leafed and compound-leafed species. However, KNOXI genes are not involved in compound leaf formation in several legume species. Here, we identify a pathway for dual repression of MtKNOXI function in Medicago truncatula. PINNATE-LIKE PENTAFOLIATA1 (PINNA1) represses the expression of MtKNOXI, while PINNA1 interacts with MtKNOXI and sequesters it to the cytoplasm. Further investigations reveal that UNUSUAL FLORAL ORGANS (MtUFO) is the direct target of MtKNOXI, and mediates the transition from trifoliate to pinnate-like pentafoliate leaves. These data suggest a new layer of regulation for morphological diversity in compound-leafed species, in which the conserved regulators of floral development, MtUFO, and leaf development, MtKNOXI, are involved in variation of pinnate-like compound leaves in M. truncatula.


Assuntos
Medicago truncatula , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
9.
BMC Plant Biol ; 24(1): 245, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575879

RESUMO

Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.


Assuntos
Brassica napus , Brassica rapa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/metabolismo , Brassica napus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Germinação/genética , Brassica rapa/metabolismo , Metaboloma , Amido/metabolismo , Sacarose/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas , Transcriptoma
10.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594609

RESUMO

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Assuntos
Arabidopsis , Oryza , Genes de Plantas , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Enxofre/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Raízes de Plantas/metabolismo
11.
BMC Plant Biol ; 24(1): 256, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594627

RESUMO

BACKGROUND: Climate change has led to severe cold events, adversely impacting global crop production. Eggplant (Solanum melongena L.), a significant economic crop, is highly susceptible to cold damage, affecting both yield and quality. Unraveling the molecular mechanisms governing cold resistance, including the identification of key genes and comprehensive transcriptional regulatory pathways, is crucial for developing new varieties with enhanced tolerance. RESULTS: In this study, we conducted a comparative analysis of leaf physiological indices and transcriptome sequencing results. The orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted peroxidase (POD) activity and soluble protein as crucial physiological indicators for both varieties. RNA-seq data analysis revealed that a total of 7024 and 6209 differentially expressed genes (DEGs) were identified from variety "A" and variety "B", respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs demonstrated that the significant roles of starch and sucrose metabolism, glutathione metabolism, terpenoid synthesis, and energy metabolism (sucrose and starch metabolism) were the key pathways in eggplant. Weighted gene co-expression network analysis (WGCNA) shown that the enrichment of numerous cold-responsive genes, pathways, and soluble proteins in the MEgrep60 modules. Core hub genes identified in the co-expression network included POD, membrane transporter-related gene MDR1, abscisic acid-related genes, growth factor enrichment gene DELLA, core components of the biological clock PRR7, and five transcription factors. Among these, the core transcription factor MYB demonstrated co-expression with signal transduction, plant hormone, biosynthesis, and metabolism-related genes, suggesting a pivotal role in the cold response network. CONCLUSION: This study integrates physiological indicators and transcriptomics to unveil the molecular mechanisms responsible for the differences in cold tolerance between the eggplant cold-tolerant variety "A" and the cold-sensitive variety "B". These mechanisms include modulation of reactive oxygen species (ROS), elevation in osmotic carbohydrate and free proline content, and the expression of terpenoid synthesis genes. This comprehensive understanding contributes valuable insights into the molecular underpinnings of cold stress tolerance, ultimately aiding in the improvement of crop cold tolerance.


Assuntos
Solanum melongena , Transcriptoma , Solanum melongena/genética , Solanum melongena/metabolismo , Fisiologia Comparada , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio/genética , Amido/metabolismo , Sacarose/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas
12.
BMC Genomics ; 25(1): 354, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594645

RESUMO

The homeodomain-leucine zipper (HD-Zip) gene family plays a pivotal role in plant development and stress responses. Nevertheless, a comprehensive characterization of the HD-Zip gene family in kiwifruit has been lacking. In this study, we have systematically identified 70 HD-Zip genes in the Actinidia chinensis (Ac) genome and 55 in the Actinidia eriantha (Ae) genome. These genes have been categorized into four subfamilies (HD-Zip I, II, III, and IV) through rigorous phylogenetic analysis. Analysis of synteny patterns and selection pressures has provided insights into how whole-genome duplication (WGD) or segmental may have contributed to the divergence in gene numbers between these two kiwifruit species, with duplicated gene pairs undergoing purifying selection. Furthermore, our study has unveiled tissue-specific expression patterns among kiwifruit HD-Zip genes, with some genes identified as key regulators of kiwifruit responses to bacterial canker disease and postharvest processes. These findings not only offer valuable insights into the evolutionary and functional characteristics of kiwifruit HD-Zips but also shed light on their potential roles in plant growth and development.


Assuntos
Actinidia , Proteínas de Homeodomínio , Proteínas de Homeodomínio/genética , Genoma de Planta , Filogenia , Actinidia/genética , Zíper de Leucina/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Perfilação da Expressão Gênica
13.
Funct Integr Genomics ; 24(2): 74, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600306

RESUMO

Crop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.


Assuntos
Regulação da Expressão Gênica de Plantas , Histonas , Histonas/genética , Histonas/metabolismo , Plantas/genética , Metilação de DNA , Estresse Fisiológico/genética
14.
Planta ; 259(6): 128, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639776

RESUMO

MAIN CONCLUSION: Differential expression of 128 known and 111 novel miRNAs in the panicle of Nagina 22 under terminal drought stress targeting transcription factors, stress-associated genes, etc., enhances drought tolerance and helps sustain agronomic performance under terminal drought stress. Drought tolerance is a complex multigenic trait, wherein the genes are fine-tuned by coding and non-coding components in mitigating deleterious effects. MicroRNA (miRNA) controls gene expression at post-transcriptional level either by cleaving mRNA (transcript) or by suppressing its translation. miRNAs are known to control developmental processes and abiotic stress tolerance in plants. To identify terminal drought-responsive novel miRNA in contrasting rice cultivars, we constructed small RNA (sRNA) libraries from immature panicles of drought-tolerant rice [Nagina 22 (N 22)] and drought-sensitive (IR 64) cultivars grown under control and terminal drought stress. Our analysis of sRNA-seq data resulted in the identification of 169 known and 148 novel miRNAs in the rice cultivars. Among the novel miRNAs, 68 were up-regulated while 43 were down-regulated in the panicle of N 22 under stress. Interestingly, 31 novel miRNAs up-regulated in N 22 were down-regulated in IR 64, whereas 4 miRNAs down-regulated in N 22 were up-regulated in IR 64 under stress. To detect the effects of miRNA on mRNA expression level, transcriptome analysis was performed, while differential expression of miRNAs and their target genes was validated by RT-qPCR. Targets of the differentially expressed miRNAs include transcription factors and stress-associated genes involved in cellular/metabolic/developmental processes, response to abiotic stress, programmed cell death, photosynthesis, panicle/seed development, and grain yield. Differential expression of the miRNAs could be validated in an independent set of the samples. The findings might be useful in genetic improvement of drought-tolerant rice.


Assuntos
MicroRNAs , Oryza , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/fisiologia , Secas , Perfilação da Expressão Gênica , Estresse Fisiológico/genética , Fatores de Transcrição/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética
15.
Planta ; 259(6): 129, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639804

RESUMO

MAIN CONCLUSION: IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.


Assuntos
Resistência à Doença , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Acetatos/farmacologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
16.
BMC Genomics ; 25(1): 385, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641598

RESUMO

BACKGROUND: The C2H2 zinc finger protein family plays important roles in plants. However, precisely how C2H2s function in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear. RESULTS: In this study, a total of 69 OpC2H2 zinc finger protein genes were identified and clustered into five Groups. Seven tandem and ten fragment repeats were found in OpC2H2s, which underwent robust purifying selection. Of the identified motifs, motif 1 was present in all OpC2H2s and conserved at important binding sites. Most OpC2H2s possessed few introns and exons that could rapidly activate and react when faced with stress. The OpC2H2 promoter sequences mainly contained diverse regulatory elements, such as ARE, ABRE, and LTR. Under salt stress, two up-regulated OpC2H2s (OpC2H2-1 and OpC2H2-14) genes and one down-regulated OpC2H2 gene (OpC2H2-7) might serve as key transcription factors through the ABA and JA signaling pathways to regulate the growth and development of Opisthopappus species. CONCLUSION: The above results not only help to understand the function of C2H2 gene family but also drive progress in genetic improvement for the salt tolerance of Opisthopappus species.


Assuntos
Dedos de Zinco CYS2-HIS2 , Dedos de Zinco CYS2-HIS2/genética , Estresse Salino/genética , Genoma de Planta , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
17.
Physiol Plant ; 176(2): e14293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641970

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs in eukaryotes. Plant endogenous miRNAs play pivotal roles in regulating plant development and defense responses. MicroRNA394 (miR394) has been reported to regulate plant development, abiotic stresses and defense responses. Previous reports showed that miR394 responded to P. infestans inoculation in potato, indicating that miR394 may be involved in defense responses. In this study, we further investigated its role in potato defense against P. infestans. Stable expression of miR394 in tobacco and potato enhances the susceptibility to P. infestans, which is accompanied with the reduced accumulation of ROS and down-regulation of the PTI (pattern-triggered immunity) marker genes. Besides well-known target StLCR, miR394 also targets StA/N-INVE, which encodes a chloroplast Alkaline/Neutral Invertases (A/N-INVE). Both StLCR and StA/N-INVE positively regulate late blight resistance, while miR394 degrades them. Interestingly, StA/N-INVE is located in the chloroplast, indicating that miR394 may manipulate chloroplast immunity. Degradation of StA/N-INVE may affect the chloroplast function and hence lead to the compromised ROS (reactive oxygen species) burst and reduced retrograde signaling from the chloroplast to the nucleus and cytoplasm. In summary, this study provides new information that miR394 targets and degrades StA/N-INVE and StLCR, which are positive regulators, to enhance potato susceptibility to P. infestans.


Assuntos
MicroRNAs , Phytophthora infestans , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Plantas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Mol Biol Rep ; 51(1): 554, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642178

RESUMO

BACKGROUND: The Lateral Organ Boundaries Domain (LBD) gene family is a family of plant-specific transcription factors (TFs) that are widely involved in processes such as lateral organ formation, stress response, and nutrient metabolism. However, the function of LBD genes in maize remains poorly understood. METHODS AND RESULTS: In this study, a total of 49 ZmLBD genes were identified at the genome-wide level of maize, they were classified into nine branches based on phylogenetic relationships, and all of them were predicted to be nuclear localized. The 49 ZmLBD genes formed eight pairs of segmental duplicates, and members of the same branches' members had similar gene structure and conserved motif composition. The promoters of ZmLBD genes contain multiple types of cis-acting elements. In addition, by constructing the regulatory network of ZmLBD and other genes and miRNAs, 12 and 22 ZmLBDs were found to be involved in the gene regulatory network and miRNA regulatory network, respectively. The expression pattern analysis suggests that ZmLBD genes may be involved in different biological pathways, and drought stress induced the expressions of two inbred lines. CONCLUSIONS: The findings enhance our comprehension of the potential roles of the ZmLBD gene family in maize growth and development, which is pivotal for genetic enhancement and breeding efforts pertaining to this significant crop.


Assuntos
Genoma de Planta , Zea mays , Genoma de Planta/genética , Família Multigênica , Filogenia , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Perfilação da Expressão Gênica
19.
Mol Biol Rep ; 51(1): 539, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642202

RESUMO

BACKGROUND: Auxin response factor (ARF), a transcription factors that controls the expression of genes responsive to auxin, plays a key role in the regulation of plant growth and development. Analyses aimed at identifying ARF family genes and characterizing their functions in Juglans sigillata Dode are lacking. METHODS AND RESULTS: We used bioinformatic approaches to identify members of the J. sigillata ARF gene family and analyze their evolutionary relationships, collinearity, cis-acting elements, and tissue-specific expression patterns. The expression patterns of ARF gene family members under natural drought conditions were also analyzed. The J. sigillata ARF gene family contained 31 members, which were unevenly distributed across 16 chromosomes. We constructed a phylogenetic tree of JsARF genes and other plant ARF genes. Cis-acting elements in the promoters of JsARF were predicted. JsARF28 showed higher expressions in both the roots and leaves. A heat map of the transcriptome data of the cluster analysis under drought stress indicated that JsARF3/9/11/17/20/26 are responsive to drought. The expression of the 11 ARF genes varied under PEG treatment and JsARF18 and JsARF20 were significantly up-regulated. CONCLUSIONS: The interactions between abiotic stresses and plant hormones are supported by our cumulative data, which also offers a theoretical groundwork for comprehending the ARF mechanism and drought resistance in J. sigillata.


Assuntos
Ácidos Indolacéticos , Juglans , Ácidos Indolacéticos/metabolismo , Filogenia , Juglans/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
20.
Plant Cell Rep ; 43(5): 124, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643320

RESUMO

KEY MESSAGE: Two peanut LEC1-type genes exhibit partial functional redundancy. AhNFYB10 could complement almost all the defective phenotypes of lec1-2 in terms of embryonic morphology, while AhNF-YB1 could partially affect these phenotypes. LEAFY COTYLEDON1 (LEC1) is a member of the nuclear factor Y (NF-Y) family of transcription factors and has been identified as a key regulator of embryonic development. In the present study, two LEC1-type genes from Arachis hypogeae were identified and designated as AhNF-YB1 and AhNF-YB10; these genes belong to subgenome A and subgenome B, respectively. The functions of AhNF-YB1 and AhNF-YB10 were investigated by complementation analysis of their defective phenotypes of the Arabidopsis lec1-2 mutant and by ectopic expression in wild-type Arabidopsis. The results indicated that both AhNF-YB1 and AhNF-YB10 participate in regulating embryogenesis, embryo development, and reserve deposition in cotyledons and that they have partial functional redundancy. In contrast, AhNF-YB10 complemented almost all the defective phenotypes of lec1-2 in terms of embryonic morphology and hypocotyl length, while AhNF-YB1 had only a partial effect. In addition, 30-40% of the seeds of the AhNF-YB1 transformants exhibited a decreasing germination ratio and longevity. Therefore, appropriate spatiotemporal expression of these genes is necessary for embryo morphogenesis at the early development stage and is responsible for seed maturation at the mid-late development stage. On the other hand, overexpression of AhNF-YB1 or AhNF-YB10 at the middle to late stages of Arabidopsis seed development improved the weight, oil content, and fatty acid composition of the transgenic seeds. Moreover, the expression levels of several genes associated with fatty acid synthesis and embryogenesis were significantly greater in developing AhNF-YB10-overexpressing seeds than in control seeds. This study provides a theoretical basis for breeding oilseed crops with high yields and high oil content.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arachis/genética , Arachis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Melhoramento Vegetal , Ácidos Graxos/metabolismo , Desenvolvimento Embrionário , Lipídeos , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...